[image: image1.png]

[image: image2.emf]“Test Everything without really

Testing”



There are few proven technique available in the market, they arereferred

as "Pairwisetesting", "combinatorial Method" and "Orthogonal

Arrays"(TaguchiMethod)(actually, each of these is similar but different).

Generally we call these technique as "ALL-PAIRS“.



Let’s start with an example and analyze the “All Pairs”advantages.

[image: image3.emf]Example 1:



Assume that we have a simple software application called Product-A. A

one-screen GUI application with a listbox, checkbox and OK button.

[image: image4.emf]Product A



A list box contains the 4 values and checkbox is either check oruncheck.

[image: image5.emf]Exhaustive Combination –Product A



If we are performing combination for this testcases, we will end up in

4x2=8 (Cartesian product) combination of testcases. i.e



Testing the Product-A doesn’t require much time for our tester. Let’s add

little complexity to the Product-A application and name it as Product -B.

[image: image6.emf]Example 2: Product -B



Our Product-B application is having



1. Listbox(9 values)



2. Checkbox



3. Radio button



4. Text box.



Constraint



Text box: +vevalues between 1-100

[image: image7.emf]Values present in the objects



Listboxcontains 0,1,2,3….. 9



Checkbox is either check or uncheck



Radio button is either on or off



Textbox constraint is, it should take no’s ranges between 1-100.

[image: image8.emf]Exhaustive Combination for Product B



Exhaustive combination of the Product-B is,

Listbox=10

checkbox=2

Radio=2

Textbox=100(not taking negative conditions)

10x2x2x100=4000 (Cartesian product)

No. of testcases=4000 (not considering negative condition)

Exhaustive Combination Including negative > 4000 testcases

[image: image9.emf]Applying STT for Product B



list box is having 0-9 has the value. Zero is a unique value (neither +ve

nor –ve) and rest of the values we treated as Others.



Zero and Others (1-9) are the reduced values of the listbox



We cannot reduce the values of Checkbox and also radio button sowe

treat the values asitis in our column.



Textbox -The constraint of the textbox is , it can take the no’s

ranges between 1-100. So we will reduce the values as

Valid Integer , Invalid Integer ,Alpha-Special Char



*** STT-Software testing technique

[image: image10.emf]

[image: image11.emf]Can we reduce?



Exhaustive Combination Including negative > 4000 testcases



Software Technique Product-B = 2x2x2x3=24 testcases(includesnegative

conditions)



Can we reduce the combination further down?



Yes we can reduce it.

Let us use “All-Pairs”techniques ("Orthogonal Arrays"(Taguchi

Method),”Pairwisetesting" and "combinatorial Method") and will see

the result

[image: image12.emf]All Pairs Technique to the Product -B



Order your variables so that the one with the most number of values is the

first and the least is as last..



Step 1:

[image: image13.emf]Step 2 :



Now let's start filling in the table. Each row of the table willrepresent a

unique testcase/scenario. We will fill the table column by column. Look at

how many values there are in column 2. Here, we see that the Listbox

column has 2 values. That’s how many times you will need to insert the

values of the first column, Textbox.

[image: image14.emf]Step 3:



Column three is checkbox. The user either check or uncheck the

checkbox. Now let's start pairing the column-3(checkbox) with the

column-1(textbox). You attained the following combination.

[image: image15.emf]Step 4:



Let’s make sure we have all our pairs between column-3(checkbox) and



column-2(listbox). We have a 0 and Check, but wait –there’s no 0 and

Uncheck. We have an Other and Uncheck, but there’s no Other and

Check. Let’s swap around the values in the second set in the third column.

Now the combination will be like the following table:

[image: image16.emf]Step 5:



Now check whether every value is interacted with every other value in the

combination.Nowwe will follow the same procedure and start doing the

combination for the fourth column (radio).

[image: image17.emf]Step 6:



Let's cross verify whether the all the values are paired with eachother.

When we verified with the column-1(textbox) and column-4(radio) , the

combination is proper but when we compared with the column-2(listbox)

and column-4(radio) we again started getting the issue which we faced for

column2(listbox) and column-3(checkbox).0 and on is there but no O and

off similarly Others and Off is present but Others and On is missing.



Now we will do the similar kind of swapping for the 3rd set of 4th column.

[image: image18.emf]Analyzing Report



Exhaustive Combination (including negative condition)>4000



Applying Software Technique , the no of testcaseshas been reduced to 24



All pairs technique reduced the testcasesto 6 testcases. We fit every pair

of values into six cases

[image: image19.emf]Example 3: Product -C

Let’s say Version 3.0 of our multiplier

adds two more checkboxes. checkbox2

will give the factorial value of the output,

and checkbox3 will convert the output

into Hexadecimal notation. So we have to

add two more columns to our table and

enter our values.



Follow the same procedure for

1-4 column in Product-B.



The next step is start doing pairing

with the checkbox2(5

th

column).

[image: image20.emf]Step 8:



Let’s make sure each column has at least one pair with our newly added

fifth column: Column 2 is OK: (0/Yes 0/No, Other/Yes, Other/No),

Column 3 is OK: (On/Yes, On/No, Off/Yes, Off/No),andColumn 4 is OK:

(Checked/Yes, Checked/No, Unchecked/Yes, Unchecked/No). Notice that

the on off sequence in the last set in the third column is no longer arbitrary

as it was when we hadonlythree columns filled in. We need it in that order

now for our new value pairs.

[image: image21.emf]Step 9:



Let’s again make sure each column has at least one pair with our newly

added column: Column 2 is OK. We have a 0/Dec 0/Hex Other/Dec

Other/Hex. However, column 3 is problematic: We do have an On/Dec

and Off/Hex, but we’re missing On/Hex and Off/Dec pairs. Column 4 is

OK: Checked/Dec, Checked/Hex, Unchecked/Dec, Unchecked/Hex.

Column 5 is OK: We have a Yes/Dec, Yes/Hex, No/Dec, and No/Hex.

This time, we can’t fit in our missing pairs (On/Hex and Off/Dec) by

simply swapping around values. If we did, then other pairs wouldget out

of whack. Instead, we simply add two more testcasesthat contain these

pairs. Hence, the blank rows.

[image: image22.emf]Pairing Explanation



Let’s again make sure each column has at least one pair with our newly

added column: Column 2 is OK. We have a 0/Dec 0/Hex Other/Dec

Other/Hex. However, column 3 is problematic: We do

have an On/Dec and Off/Hex, but we’re missing On/Hex and Off/Dec

pairs. Column 4 is OK: Checked/Dec, Checked/Hex, Unchecked/Dec,

Unchecked/Hex. Column 5 is OK: We have a

Yes/Dec, Yes/Hex, No/Dec, and No/Hex.



[image: image23.emf]Cont…



This time, we can’t fit in our missing pairs (On/Hex and Off/Dec) by

simply swapping around values. If we did, then other pairs wouldget out

of whack. Instead, we simply add two more testcasesthat contain these

pairs. Hence, the blank rows.

[image: image24.emf]Cont…



The other variable values are purely arbitrary. They need to be filled in

with some value, but we don’t care which value, because we already have

all our pairs. Go ahead and fill in the empty cells as you desire, and there

you have it –all combinatorial pairs in eight cases instead of all

combinations in 96!

[image: image25.emf]Conclusion

In Mathematical theory, the combinatorial test design technique is a

thoughtful method when test planning. There are tools available in the

market which will generate the combination for the user. One of the great

tool is “All Pairs”. Download the all-pairs calculator and try it out. Using

it, you can quickly generate test cases that have a good chance of finding

bugs, instead of mindlessly copying and pasting text into test case

templates. Also remember there is still more work to do to reduce your

test set down to its optimal number of test cases while still maintaining its

fault-detection capability.

